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1

Mathematical induction

Prelimary reading: Rosenbaum, Polya ch. 7.
Concurrent reading: Sominskii.
Further reading: Thurston chs 1 and 2, Ledermann and Weir.

The set of all whole numbers �1, 2, 3, . . .� is often denoted by N. We
will usually call N the set of natural numbers, and, sometimes, the set of
positive integers. Note that N excludes 0.

1 1�� 2� � 3�� . . .� n� 	
n(n� 1)(2n� 1)

6
.

Is this proposition true or false?
Test it when n	 1, n	 2 and n	 3.
How many values of n should you test if you want to be sure it is
true for all natural numbers n?

If we write f (n)	
n(n� 1)(2n� 1)

6
, show that

f (n)� (n� 1)�	 f (n� 1).
Now suppose that the proposition with which we started holds for
some particular value of n: add (n� 1)� to both sides of the
equation and deduce that the proposition holds for the next value
of n.
Since we have already established that the proposition holds for
n	 1, 2, and 3, the argument we have just formulated shows that it
must hold for n	 4, and then by the same argument for n	 5, and
so on.

2 When n is a natural number, 6� � 5n� 4 is divisible by 5.
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Check this proposition for n	 1, 2 and 3.
By examining the difference between this number and
6���� 5(n� 1)� 4, show that if the proposition holds for one
value of n, it holds for the succeeding value of n. When you have
done this you have established the two components of the proof of
the proposition by mathematical induction.

3 Prove the following propositions by induction (some have easy
alternative proofs which do not use induction):

(i) 1� 2� 3� . . .� n	�
�
n(n� 1),

(ii) a� (a� d)� (a� 2d)� . . .� (a� (n� 1)d)

	�
�
n(2a� (n� 1)d),

(iii) 1�� 2� � 3�� . . .� n�	 [�
�
n(n� 1)]�,

(iv) 1 · 2� 2 · 3� 3 · 4� . . .� n(n� 1)	�
�
n(n� 1)(n� 2),

(v) � 2� 4� . . .� 2���	 2�� 1,

(vi) 1�x�x� � . . .� x���	
x�� 1

x� 1
, provided x� 1.

(vii) (optional) 1� 2x� 3x�� . . .� nx��� 	
nx�

x� 1
�

x�� 1

(x� 1)�
,

provided x� 1.

4 Pascal’s triangle, shown here, is defined inductively, each entry
being the sum of the two (or one) entries in the preceding row
nearest to the new entry. The (r� 1)th entry in the nth row is
denoted by (�

�
)

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 . . . . . . . . . . . . . . . 1

and called ‘n choose r’ because it happens to count the number of
ways of choosing r objects from a set of n objects. Notice that we
always have 0� r� n. From the portion of Pascal’s triangle which
has been shown, for example,

�
3

0�	 1, �
3

1�	 3, �
3

2�	 3 and �
3

3�	 1.

From the definition of Pascal’s triangle we have
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�
n

r� 1���
n

r�	�
n� 1

r � , when 0� r� n.

Prove by induction that �
n

r�	
n!

r!(n� r)!
, taking 0!	 1.

Verify that this formula gives �
n

r�	 �
n

n� r� .
What aspect of Pascal’s triangle does this reflect?

5 The Binomial Theorem for positive integral index
Prove by induction that

(1�x)�	�
n

0�� �
n

1� x� �
n

2� x�� . . .��
n

r� x�� . . .��
n

n�x�.
6 Examine each of the propositions:

(i) 2��� � n�,
(ii) n�� n� 41 is a prime number.

Find values of n for which these propositions hold and also a value
of n for which each is false.
If you were to attempt a proof by induction of either of these
propositions, where would the proof break down?

7 Examine the numbers 6�� 5n� 1 and 6���� 5(n� 1)� 1.
Find their difference.
Deduce that if the first of these numbers were divisible by 5 then
the second would also be divisible by 5. Deduce also that if the
second were divisible by 5 then the first would also be divisible by
5.
Is the first number divisible by 5 when n	 1?
Are there any values of n for which these numbers are divisible by
5?
If you were to attempt a proof by induction that the first number
was divisible by 5, where would the proof break down?

8 Define y
�� 	 y, y
��	
dy

dx
, and y
����	

dy
��

dx
.

(i) Let y	 log
�
(1� x), so

dy

dx
	

1

1�x
.

Prove that for n� 1, (1�x)y
����� ny
��	 0.
Deduce that when x	 0, y
����	 (�1)�n!
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(ii) Let y	 arctanx, so
dy

dx
	

1

1�x�
.

Prove that for n� 1,
(1�x�)y
����� 2(n� 1)xy
����� n(n� 1)y
��	 0.
Deduce that when x	 0, y
���	 0 and y
�����	 (�1)�(2n)!

There is ambiguity in the literature on the question of whether N

contains 0 or not. If mathematics starts with sets, and particularly the
empty set, the equipment for counting the elements of finite sets must
include 0. The psychological origins of counting, however, start with 1.
It is this convention we have called natural. Both conventions are
well-established.

    

A proposition, P(n), relating to a natural number n, is valid for all
natural numbers n, if

(a) P(1) is true; the proposition is valid for n	 1 and

(b) P(n)�P(n� 1); the proposition for n implies the proposition for
n� 1.

Historical note

Triangular numbers were studied by Nicomachus (c. 100A.D.) The
sum of the first n squares was known to Archimedes (c. 250B.C.) and
the sum of the first n cubes to the Arabs (c. A.D. 1010). The justification
of these forms uses induction implicitly.

The earliest use of proof by mathematical induction in the literature
is by Maurolycus in his study of polygonal numbers published in
Venice in 1575. Pascal knew the method of Marolycus and used it for
work on the binomial coefficients (c. 1657). In 1713, Jacques Bernoulli
used an inductive proof to make rigorous the claim of Wallis that

���
�
���

r�

n���
�

1

k� 1
as n��.

By the latter part of the eighteenth century, induction was being used
by several authors. The name ‘mathematical induction’ as distinct from
scientific induction is due to De Morgan (1838). The use of inductive
definitions long pre-dates this method of proof.

The well-ordering principle, that every non-empty set of natural
numbers has a least member, is equivalent to mathematical induction
(see Ledermann and Weir, 1996). Well-ordering was used by Euclid
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(VII.31) to show that every integer has a prime factor and by Fermat
(1637) in his proof of the non-existence of integral solutions to
x
� y
 	 z�. However, the recognition of the relationship between
well-ordering and induction is recent, and from an historical point of
view, awareness of the two principles developed independently.

During the nineteenth century there were several attempts to give a
formal description of the natural numbers, notably by H. Grassmann
(1861) and H. von Helmholtz (1887) both of whom assumed the
Principle of Induction. R. Dedekind (1888) defined N as an arbitrary
infinite chain and was able to prove the Principle of Induction. But in
1889, G. Peano, working with Dedekind’s material, adopted the
Principle of Mathematical Induction as one of his five postulates for
defining the natural numbers, and his account remains standard to this
day though Peano’s Postulates admit non-standard models.

7Historical note



Answers and comments

1 Let P(n) mean ‘1�� 2�� 3�� . . .� n�	 n(n� 1)(2n� 1)/6’.
You checked that P(1), P(2) and P(3) were all true.
The algebra you did showed that P(n)�P(n� 1).
So (by induction) P(n) is true for all natural numbers n.

2 Let P(n) mean ‘6�� 5n� 4 is divisible by 5’.
Because 5 � 5, P(1) is true. Because 5 � 30, P(2) is true. Because 5 � 205,
P(3) is true.
The difference between the expression for n� 1 and the expression for
n is 5 · 6� � 5, which is divisible by 5, so P(n)�P(n� 1). And (by
induction) P(n) is true for all natural numbers n.

3 Take each of the six propositions in turn as P(n). Verify the truth of
P(1) in each case. The algebra behind the proof of P(n)�P(n� 1) is as
follows:

(i) �
�
n(n� 1)� (n� 1)	�

�
(n� 1)(n� 2),

(ii) �
�
n[2a� (n� 1)d]� (a� nd)	�

�
(n� 1)(2a� nd),

(iii) [�
�
n(n� 1)]�� (n� 1)� 	 [�

�
(n� 1)(n� 2)]�,

(iv) �
�
n(n� 1)(n� 2)� (n� 1)(n� 2)	 �

�
(n� 1)(n� 2)(n� 3),

(v) (2�� 1)� 2�	 2���� 1,

(vi)
x�� 1

x� 1
�x�	

x���� 1

x� 1
.

(vii)
nx�

x� 1
�

x�� 1

(x� 1)�
� (n� 1)x�	

nx�� (n� 1)x�(x� 1)

x� 1
�

x�� 1

(x� 1)�

	
(n� 1)x���

x� 1
�
x���� 1

(x� 1)�
.

4 If P(n) is the proposition we are asked to prove for 0� r� n,

�
n

0�	�
n

n�	 1

is easily checked, and incorporates the truth of P(1). If we assume P(n)
and apply it to the Pascal triangle property, we get P(n� 1).
Symmetry about a vertical axis.

5 For the inductive step, one must show that the coefficient of x� in

(1�x)���	 (1�x)�(1�x) is �
n

r� 1���
n

r� .
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6 (i) True for n� 6, false for 7� n.

(ii) True for n� 39, false for n	 40, or a multiple of 41, or 40� k�.

P(n) does not imply P(n� 1).

7 6� � 5n� 1 divisible by 5� 6���� 5(n� 1)� 1 divisible by 5.
But both statements are false because the first statement is false when
n	 1. P(1) is false.

8 (i) (1�x)dy/dx	 1, or (1� x)y
��	 1, so (1�x)y
��� y
��	 0, and
the proposition holds for n	 1.
Suppose (1� x)y
����� ny
�� 	 0, differentiating we have
(1�x)y
����� (n� 1)y
����	 0, and the proposition for n
implies the proposition for n� 1.
When x	 0, y
��	 1 and y
����	 � ny
��. So
y
����	 (�1)�n!� y
����	 (�1)���(n� 1)! and the result holds
by induction.

(ii) Differentiate (1� x�)y
��	 1 twice to get result for n	 1.
Differentiate result for n to obtain result for n� 1. Result follows
by induction.
When x	 0, y
��	 1, y
��	 0 and y
����� n(n� 1)y
��	 0. So
result holds for n	 1.
Also y
���	 0� y
�����	 0, and y
�����	 (�1)�(2n)!
� y
�����	�(2n� 1)(2n� 2)(�1)�(2n)!	 (�1)���(2n� 2)!.
So result holds by induction.
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